The generator matrix

 1  0  1  1  1  1  1  1  3  1  0  1  3  1  3  0  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  1  1  1 2X+6  1  1  1 X+3  1  1  X  1 2X  1 2X+6  1  1  1 2X  1  1 X+3  1  1  1  1  1  1  1  1  1  1  X  1  1  1  1 2X+3  1  1  1  1  1  1  1  1 X+3  1  1 2X  1  1  1  6 2X  1  1  1  1  1 2X+3  1 X+6
 0  1  1  8  3  2  4  0  1  8  1 2X+4  1 X+1  1  1  3 X+2 2X+8  3 2X+1  0 X+7 X+8 X+2 2X+8 2X+2  8 2X+3 2X+4  1 X+1 X+6 X+3  1  1 X+6 X+7  1 2X 2X+1  1 X+3  1  1  1 2X X+8 X+2  1 X+7 X+6  1 2X+6 X+3  7  2 X+8 2X+2  2  7 X+8  8  1 2X+6 2X+7 X+5 2X+5  1  5 2X 2X+5  2 2X+2 2X+2  X X+6  1 X+1 2X+2  1 2X+7 X+2 X+4  1  1 X+1 X+5 2X+5 2X+3 2X+8  1  0  1
 0  0 2X  6 X+6 X+3 2X+3 2X+6  X 2X+6 2X+6  3  6  X X+6 2X+3  3  0 2X+3  X  6 2X X+3 X+3 2X+3  6 X+6  0 X+6 2X  X 2X+3 2X  6  3  0  X  0  3  6  X 2X+3 2X+6 2X+6 X+3 X+6 2X 2X+6 X+6  X  3 X+3 X+6 2X+6 X+6  6 2X+6  6  0 2X X+6  3  X  0 X+3 X+6 2X+3  X  6  3 2X+3 2X+3 X+6 2X+6  3  0  6 2X 2X X+3 2X 2X+3  X  6 2X X+3 X+6  0 X+3  X  0 2X+3  3  X

generates a code of length 94 over Z9[X]/(X^2+3,3X) who�s minimum homogenous weight is 183.

Homogenous weight enumerator: w(x)=1x^0+604x^183+738x^184+660x^185+904x^186+504x^187+540x^188+560x^189+450x^190+180x^191+446x^192+264x^193+240x^194+264x^195+144x^196+38x^198+6x^202+12x^210+4x^216+2x^222

The gray image is a code over GF(3) with n=846, k=8 and d=549.
This code was found by Heurico 1.16 in 0.52 seconds.